
Critical eigenfunctions in a quantum hierarchical system

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1988 J. Phys. A: Math. Gen. 21 L75

(http://iopscience.iop.org/0305-4470/21/2/003)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 11:25

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/21/2
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 21 (1988) L75-L83. Printed in the U K  

LE'ITER TO THE EDITOR 

Critical eigenfunctions in a quantum hierarchical system 

H A Ceccatto? and W P KeirsteadS 
t Applied Physics Department, Stanford University, Stanford, CA 94305, USA 
$ Physics Department, Stanford University, Stanford, CA 94305, USA 

Received 20 October 1987 

Abstract. The eigenstates of an electron in a hierarchical potential are investigated in the 
tight-binding approximation. The energy spectrum, which is known to be a Cantor set of 
measure zero, is found to possess wavefunctions which are self-similar and critical (i.e. 
the envelope has power law decay from the maximum). The wavefunctions are investigated 
in detail, with analytical and numerical results presented for their scaling properties. 

There exist in one-dimensional quantum systems three qualitatively different types of 
energy spectra. For a periodic potential, one has a band structure with a continuum 
of possible energy values, giving rise to extended eigenfunctions. In a random potential, 
the spectrum is point-like, leading to exponentially localised wavefunctions. Third, 
there is the intermediate case of a singular continuous spectrum as has been seen in 
quasiperiodic systems (Sokoloff 1985). In this case, it has been proposed that the 
wavefunction is critical-i.e. the envelope of the wavefunction falls off from the 
maximum as some power of distance (Thouless and Niu 1983, Ostlund and Pandit 
1984, Kohmoto et al 1987). In a previous paper (Ceccatto er a1 1987), we proposed 
a model tight-binding equation for an electron in a hierarchical potential, a natural 
quantum extension of the classical problem of diffusion in hierarchical systems (Huber- 
man and Kerszberg 1985). We found there that the energy spectrum is a Cantor set? 
of measure zero. In this letter we investigate in detail the nature of the wavefunctions 
corresponding to this set. We find that the eigenfunctions are self-similar and critical 
and we account analytically and numerically for their scaling properties. 

We begin by considering the following tight-binding Hamiltonian for an electron 
in a hierarchical potential: 

E*n = t n + l , n * n + l +  L l . n * n - I  ( 1 )  
where the transition matrix elements = z , , ~ - ,  are given by 

n = 2 j + l  

n = 2k(2j+ 1 ) .  

We take the hierarchy to be in the transition matrix elements, in natural correspondence 
to the master equation in the classical ultradiffusion problem. Also, we assume R to 
be in the interval [0, 1 1  so that f n - l . n  is an almost periodic function of n. Figure 1 
gives a graphical representation of the transition matrix elements as a hierarchical 
array of barriers. 

t By Cantor set, we mean a closed set containing no isolated or interior points (see, for example, Gucken- 
heimer and Holmes 1983). 
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Figure 1. The off-diagonal transfer matrix elements, represented as barriers of heights 
inversely proportional to the hopping rates. The element I,-,,, corresponds to the barrier 
between cells n - 1 and n. 

To study the system of ( l ) ,  it is convenient to consider it as the limit of increasingly 
larger periodic systems. The systems of period p,, = 2" is obtained by setting all 
transition matrix elements of the form V R k - ' ,  k >  n - 1 ,  equal to VR"-' .  Thus ( 1 )  
corresponds to n + 00. If we decimate cells 4j + 1 and 4j + 2, j integer, we obtain the 
pn- ,  system, provided that we have renormalised values for E and V given by 

v ' =  R ( E * -  v2) E ' =  E ( E ' -  v * - i ) / v  (3) 

The wavefunction is not renormalised. Let E,, and V,, be the nth iterates of E and V. 
If we define T,+, = ( E :  - V', - 1)/ V,,, then E is in the eigenspectrum of the period p,, 
system provided that I T,, 1 S 2 .  With this defintion, we may rewrite (3) in terms of T 
and V alone: 

Vn+,= R ( 1 +  VnTn+l) RT,,+2= T ' , + , + ( l  - R 2 ) V , , T , , + , - ( 1 + R 2 ) .  (4) 

Equation (4) has two relevant fixed points, namely 

Note that these fixed points have I T* I < 2, and hence initial points which iterate 
to them correspond to energies in the spectrum of the infinite system. Let us investigate 
in greater detail how points iterate to either of the fixed points. The a = 1 fixed point 
has eigenvalues satisfying 0 < A ,  < 1 < A 2 ,  and is thus hyperbolic. The a = - 1 fixed 
point has eigenvalues A ?  < - 1  < A ,  < 0, and thus is hyperbolic with reflection. From 
examination of the (T, V )  phase space diagram, it is apparent that there exist two 
heteroclinic points where the stable invariant manifold of one fixed point intersects 
the unstable invariant manifold of the other. As is well known (see, for example, Berry 
1978), the existence of one heteroclinic point implies the existence of an infinity of 
them. Thus, the stable invariant manifolds near the two fixed points must be extra- 
ordinarily complicated twisted objects. The intersections of these curves with the line 
V = V,, T E [ - 2 , 2 ] ,  gives rise to the set of initial T values which iterate to the fixed 
points. From our first paper, we know that these two sets of points each have fractal 
measure zero and thus correspond to only a small part of the total spectrum. We 
anticipate that the rest of the spectrum, an uncountable set with non-zero fractal 
dimension, corresponds to bounded chaotic solutions to (4). 

To provide a picture of the wavefunctions at the fixed points, introduce the transfer 
matrix M,, defined by 
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where p,, = 2". The quantity T,, defined above is related to the transfer matrix by 
T =Tr M,,. One may easily show that there exists a recursion relation among the 
transfer matrices, namely that M,+I = A M : ,  where the matrix A is given by 

The starting value is 

( E 2 - V 2 ) / V  - E / V  
E / V  -1/ v 

At the fixed point, we may rewrite the recursion relation as a linear one: M,+, = 
A(aM, ,  - I ) ,  n 5 1, where I is the identity matrix. This expression may be explicitly 
evaluated, with the result that M,,, = ( a A ) " ( M , +  E )  - E, where the matrix B is given 
by 

). (9) .=-( 1 R - a E ( l + a R )  
1 - a R  0 -U  

Next, let us take into account the boundary conditions for the wavefunctions at 
the fixed points. For the periodic system of period pn,  Bloch's theorem implies that 
+,+p,v = exp(ikp,)+,, for some wavenumber k. Thus, if we fix our overall normalisation 
and phase by taking +bo = 1, we have $, = [exp(ikp,) - 8 , ] / y , ,  + E * ,  as n +a. We have 
used these initial values with (1) to plot the wavefunction at the two fixed points, 
a = il. In figure 2 (a ) ,  we have plotted the first 1024 cells of the absolute value of the 
wavefunction for the a = 1 fixed point; in figure 2(b), we show the first 128 cells. Note 
in particular the identical shape of the two wavefunctions, exhibiting the self-similarity 
of the wavefunction. In figures 2(a)  and (b),  we have plotted the wavefunction at the 
a = -1 fixed point in the same manner. Again, note the self-similarity. 

On first inspection, we appear to have two different types of wavefunctions. For 
the fixed point, corresponding to a = 1 (figure 2 ) ,  we see that the envelope of the 
wavefunction monotonically increases with position. We will show in a moment that 
the dependence is in fact algebraic, i.e. $I:"" - n@. This corresponds to a wavefunction 
intermediate between extended (as in a periodic potential) and  exponentially localised 
(as in a random potential). This intermediate behaviour has been found in quasiperiodic 
systems and  has been postulated to be a signature of a singular continuous energy 
spectrum. In figure 3, where we have plotted the wavefunction corresponding to the 
a = -1 fixed point, we see something somewhat different. The wavefunction is extended 
in the sense that the envelope is at  a constant height as a function of position. It is, 
however, rather an odd  extended state because the maxima become more and more 
spread out with increasing position. In fact, we will argue that, in a suitably averaged 
sense, this wavefunction is qualitatively the same as that at the first fixed point. 

We may account for the details of figures 2 and 3 from the above work. Consider 
first the properties of the wavefunction at the fixed point with a = 1. Examination of 
the numerical plots reveals that the maxima occur at sites in = (4" - 1)/3 and  j ,  = 
2(4" - 1) /3 ,  n integer. Plotting the values of 1 $ I at these points on a log-log plot shows 
the power law behaviour of the envelope, as shown in figure 4. For R =f, the 
numerically determined exponent is p = 0.3358 * 0.0002. 

To calculate /3 analytically, consider the following. Let P, = $,,,, Q, = $!,,-,, and 
define A,, = M2M4.. . M2,. (Note that a similar scheme can be followed for the maxima 
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Figure 2. ( a )  The absolute value of the wavefunction corresponding to the fixed point 
E = ( 1  - R + R 2 ) ” ’ / (  1 - R ) ,  V =  R / (  1 - R ) ,  for R = 0.5, plotted against position for the 
first 512 cells. ( b )  The first 128 cells of the same wavefunction. Note the similarity to ( a ) .  
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Figure 3. ( a )  The absolute value of the wavefunction corresponding to the fixed point 
E = ( 1  + R + R2)”*/ (1  + R ) ,  V =  R/(1  + R ) ,  for R = 0.5, plotted against position for the 
first 1024 cells. ( h )  The first 128 cells of the same wavefunction. Note the similarity to ( a ) .  
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at sites j n  using A,, = M l M 3 . .  . M2, , - , ;  the result is the same.) Then P,, and Qn are 
related to and +bo by 

Using our expression for the matrix M k  and using the above boundary condition, we 
can write 

Now, assume a scaling, as suggested by figure 4, of the form P,, - [(4"+' - 1)/3Ip. 
Defining 7, = P , , / P n - l ,  we have 7, - [4+3/(4" - l)]'. In the large-n limit this gives 
us 7, + 7 - 4p. If one now explicitly evaluates 7 from (10) and (1 l ) ,  a short calculation 
will yield 

(1 + R + R 2 )  * [( 1 + R + R2)2 -4R2]1'2 
2 ( a  = 1). (12) 7 =  

Only the positive sign gives 7 > 1 (and hence an increasing envelope) and thus the 
positive root is the relevant one here. From the above, we have /3 = In q/ln 4 which, 
when evalued at R = f ,  gives /3 = 0.3359. The agreement with the above numerically 
determined slope is excellent. 

Consider now the wavefunction corresponding to the other fixed point ( a  = -l) ,  
as pictured in figure 3. We see from the figure that the maxima occur at sites 2"+' - 1, 

1 10 1- 102 I , , ,  
10 3 

n 

I i 

7 -. 
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105 

Figure 4. The absolute value of the wavefunction Corresponding to the fixed point E = 
( I - R + R 2 ) 1 ' 2 / ( 1 - R ) ,  V = R / ( I - R ) ,  for R=0.5 ,p lo t tedonlya t  sites i , , = ( 4 " - 1 ) / 3 ,  to 
show the scaling of the envelope. The numerically determined slope is 0.3358. 
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m = 0, 1, .  . . , and have a constant magnitude. We may calculate this value exactly. 
During the renormalisation transformation (equation (3)  above), cells 2"'+l and 2"+' - 1 
go to positions 2"' and 2" - 1, respectively. Because we are at a fixed point, the values 
of E and V are unchanged by the renormalisation and hence we are left with exactly 
the same system afterwards. If we repeat the process m times, then we see that cell 
2m+1 - 1 iterates to cell 1. Thus the value of the wavefunction at cell 2 m + 1  - 1 must be 
identical to the value at cell 1, i.e. 

+ 2 n i + l - 1  = = E * .  (13) 

For R = 0.5, this gives the envelope of the wavefunction at the constant height of 
E* = 0.8819. The agreement with figure 3 is excellent. 

One should note that, for R + 1, the location of the maxima changes to cells 3 x Y, 
j = 1 , 2 , .  . . , and the value increases above E * .  However, the envelope is still at a 
constant height. 

The flatness of the envelope of the wavefunction for the second fixed point suggests 
that the state might be extended. On the other hand, the fact that the maxima become 
more widely spaced at large positions suggests that the state might be in some sense 
localised. Let us investigate this question in more detail. To distinguish between 
localised and extended states, introduce an averaged function 6 defined by 

We see that & is equal to the value of I + 1'' (assume A > 0) averaged over the interval 
between successive maxima. For a strictly extended state, where the value of I + I is 
periodic, we see for large n that in is constant. For an exponentially localised state, 
the value of 6 also falls off exponentially with position. For a critical state where the 
wavefunction decays algebraically from the maximum, such as the wavefunction 
corresponding to the a = 1 fixed point above, $ also falls off like a power law. Thus 
& mimics the behaviour of the wavefunction. We have calculated for the fixed point 
eigenfunctions, with A =2,  and find for both cases that 4 decays algebraically from 
its maximum, i.e. $,, - x - ~  where x is the distance from the maximum. For R = f and 
a = 1, y = 0.4987 and for R = and a = -1, y = 0.2269. So we see that, in this averaged 
sense, both wavefunctions are critical. As might be expected, the value of y is closer 
to zero (and hence 6 close to constant) for the a = -1 fixed point, and hence that 
eigenfunction is closer to extended than the other. 

Other details of the wavefunctions at the two fixed points may also be derived 
using the general formalism described above. For example, from (1 1) we see that, as 
k + CO, we have I&+, = a E * / (  1 - a R )  and I& = a / (  1 - a R )  (note that this holds even 
when k is not even). Examination of figures 2 and 3 confirms this statement. Further- 
more, if we define [,, = Q,,/Qn-l for the a = 1 fixed point, we find that, as n + 00, 6 = 7. 
Thus the subsidiary maxima in figure 2 scale in the same way as the principal ones. 

Finally, we must consider the wavefunction at the uncountable set of points in the 
spectrum which do not iterate to one of the fixed points. Presumably, these points 
correspond to bounded chaotic solutions to (4). To examine the shape of such a 
wavefuction, consider one of the periodic systems described above, for some large 
value of pn. Figure 5 shows the eigenstate corresponding to an energy chosen at 
random in the 140th band of the period p8 = 256 system for V = R = 0.5. This state 
corresponds to a Bloch wavenumber kp, = 1.38. Note that this value does not corre- 
spond to either one of the fixed points: one can easily show that, for a = 1 ,  kpn = *:a/3, 
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Figure 5. The absolute value of the wavefunction plotted against position for the point 
E = 0.6849, V = R = 0.5, for the period p s  = 256 system. This point lies in the 140th band 
(counting from lowest to highest energy, with 256 total). 

and for a = -1, k = * 2 ~ / 3 .  Examination of figure 5 shows that I $ 1  is symmetric about 
the centre, a reflection of the basic symmetry of the potential around the centre in the 
finite period system. For the infinite period case of (l) ,  the centre itself is at infinity 
and hence the symmetry is not seen in pictures of the wavefunction. Other detailed 
properties of this wavefunction and similar such states are currently under investigation. 

In summary, we have presented an analysis of the eigenstates of a tight-binding 
model of an electron in a hierarchical potential. We have found that the zero measure 
Cantor set energy spectrum contains wavefunctions which, in a suitably defined average 
way, decay algebraically from their maxima. We have discussed the boundary condi- 
tions for the problem and have determined analytically and numerically the precise 
shape of the envelope for the wavefunction at the fixed points. We have also presented 
an example of an eigenfunction at one of the energies in the spectrum which does not 
iterate to either of the fixed points. Details of the nature of these states, as well as the 
problem of the spreading of a wavepacket with time, will be presented in the future. 

The authors would like to thank Bernard0 Huberman for many useful discussions. 
This was supported in part by the US Office of Naval Research, Contract no N00014-82- 
0699. One of the authors (HAC) is supported by CONICET of Argentina. 
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